Home » MP Board Class 10th Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1

MP Board Class 10th Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1


MP Board Class 10th Maths Book Solutions In this article, we will share
Chapter 1 वास्तविक संख्याएँ Ex 1.1 Pdf, These solutions are solved subject experts from latest edition books.


MP Board Class 10th Maths Solutions Chapter 1 वास्तविक संख्याएँ Ex 1.1

प्रश्न 1.निम्नलिखित संख्याओं का HCF ज्ञात करने के लिए यूक्लिड विभाजन एल्गोरिथ्म का प्रयोग कीजिए :
(i) 135 और 225
(ii) 196 और 38220
(iii) 867 और 255


हल : (i) चरण – 1 : यहाँ 225 > 135 है, इसलिए हम 225 और 135 पर यूक्लिड प्रमेयिका का प्रयोग करने पर प्राप्त करते हैं :
225 = 135 × 1 + 90

चरण – 2 : चूँकि शेषफल 90 + 0 है, इसलिए हम 135 और 90 पर यूक्लिड प्रमेयिका का प्रयोग करने पर प्राप्त करते हैं :
135 = 90 × 1 + 45
चरण – 3 : चूँकि शेषफल 45 + 0 है, इसलिए हम नए भाजक 90 एवं नए शेषफल 45 पर यूक्लिड प्रमेयिका का प्रयोग करने पर प्राप्त करते हैं :
90 = 45 × 2 + 0
चूँकि यहाँ शेषफल 0 (शून्य) आया है और नया भाजक 45 है। अत: अभीष्ट HCF (135, 225) = 45
(ii) चरण – 1 : यहाँ 38220 > 196 है, इसलिए हम 38220 और 196 पर यूक्लिड प्रमेयिका का प्रयोग करने पर प्राप्त करते हैं :
38220 = 196 × 195 + 0
चूँकि यहाँ शेषफल 0 (शून्य) आया है और नया भाजक 196 है। अतः अभीष्ट HCF (196, 38220) = 196
(iii) चरण – 1 : यहाँ 867 > 255 है, इसलिए हम 867 और 255 पर यूक्लिड प्रमेयिका का प्रयोग करने पर प्राप्त करते हैं :
867 = 255 × 3 + 102
चरण – 2 : चूँकि शेषफल 102 ≠ 0, इसलिए हम 255 और 102 पर यूक्लिड प्रमेयिका का प्रयोग करके प्राप्त करते हैं :
255 = 102 × 2 + 51
चरण-3 : चूँकि शेषफल 51 ≠ 0, इसलिए हम नए भाजक 102 एवं नए शेषफल 51 पर यूक्लिड प्रमेयिका का प्रयोग करके प्राप्त करते हैं :
102 = 51 × 2 + 0
चूँकि यहाँ शेषफल 0 (शून्य) आया है और नया भाजक 51 है। अत: HCF (867, 255) = 51

प्रश्न 2. दर्शाइए कि कोई धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है।
हल :
हम एक धनात्मक विषम पूर्णांक a लेकर प्रश्न को हल करना प्रारम्भ करते हैं। इसके लिए हम a और b = 6 में विभा

प्रश्न 3.
किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैण्ड के पीछे कार्य करना है। दोनों समूहों को समान संख्या वाले स्तम्भों में मार्च करना है। उन स्तम्भों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?
हल :
इसे क्रमबद्ध रूप से हल करने के लिए हम HCF (616, 32) ज्ञात करते हैं। इसे ज्ञात करने के लिए
हम यूक्लिड एल्गोरिथ्म का प्रयोग करके प्राप्त करते हैं :
616 = 32 × 19 + 8
32 = 8 × 4 + 0
⇒ HCF (616,32) का मान = 8
अतः, स्तम्भों की अभीष्ट अधिकतम संख्या = 8.

जन एल्गोरिथ्म का प्रयोग करते हैं।
चूँकि 0 < r < 6 है, इसलिए सम्भावित शेषफल 0, 1, 2, 3, 4 और 5 होंगे।
अर्थात् a संख्याओं 6q, 6q + 1, 6q + 2, 6q + 3, 6q + 4 और 6q + 5 के रूप का हो सकता है।
चूँकि a एक विषम संख्या है। अत: यह 6q, 6q + 2 एवं 6q + 4 के रूप का नहीं हो सकता क्योंकि ये संख्याएँ 2 से विभाज्य हैं अर्थात् सम संख्याएँ हैं।
अतः कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है। इति सिद्धम्


प्रश्न 4.
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m +1 के रूप का होता है।
हल :
मान लीजिए x कोई धनात्मक पूर्णांक है, तब यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है, जहाँ q एक धनात्मक पूर्णांक है।
2
2
2
) = 3m, जहाँ m = 3q
अब (3q)
= 9q
= 3 (3q
2
एक धनात्मक पूर्णांक है।
2
2
(3q+ 1)
= 9q

  • 6q + 1
    = 3q (3q + 2) + 1
    = 3m + 1, जहाँ m =q (3q + 2) एक धनात्मक पूर्णांक है।
    2
    2
    2
  • 12q + 3 + 1
    (3q + 2)
    = 9q
  • 12q + 4 = 9q
    2
  • 4q + 1) + 1 = 3 (3q + 1) (q + 1) + 1
    = 3 (3q
    = 3m + 1 जहाँ m = (+ 1) (3q + 1) एक धनात्मक पूर्णांक है।
    अतः, किसी धनात्मक पूर्णांक का वर्ग किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है। इति सिद्धम् MP Board Solutions

प्रश्न 5.
यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णाक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।
हल :
मान लीजिए x कोई धनात्मक पूर्णांक है, तब यह 34, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है, जहाँ q एक धनात्मक पूर्णांक है।
अब (34)
= 27q
= 9 (3q
) = 9m, जहाँ m = 3q
(3q + 1)
= 27q

  • 27q
  • 9q + 1
    = 9q (3q
  • 3q + 1) + 1
    = 9m + 1, जहाँ m = q (3q
  • 3q + 1) एक धनात्मक पूर्णांक है।
    (3q + 2)
    = 27q
  • 54q
  • 36q + 8
    = 9q (3q
  • 6q + 4) + 8
    = 9m + 8, जहाँ m = q (3q
  • 6q + 4) एक धनात्मक पूर्णांक है।
    अतः, किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है। इति सिद्धम्

Leave a Reply

Your email address will not be published. Required fields are marked *